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Two possible algorithms for the carrier-to-noise power (P./Ng) estimation in the
Block V Receiver are analyzed and their performances compared. The expected
value and the variance of each estimator algorithm are derived. The two algorithms
examined here are known as the I-arm estimator, which relies on samples from only
the in-phase arm of the digital phase-lock loop, and the IQ-arm estimator, which
uses both in-phase and quadrature-phase arm signals. The IQ-arm algorithm is
currently implemented in the Advanced Receiver II (ARX II). Both estimators are
biased. The performance degradation due to phase jitter in the carrier tracking
loop is taken into account. Curves of the expected value and the signal-to-noise
ratio of the P./Ng estimators versus actual P./Ng are shown. From this, it is clear
that the I-arm estimator performs better than the IQ-arm estimator when the data-
to-noise power ratio (Pq/Nyg) is high, i.e., at high P./Ng values and a significant

modulation index.
same performance.

l. Introduction

In the Block V Receiver, P./Ny estimates are made
from accumulated samples in the carrier tracking loop.
These estimates are used in various ways. Besides giv-
ing knowledge of the actual P./Ny and as an indicator of
when the loop is in-lock, the estimates can also be used
in the Conscan process. (In Conscan, the pointing error
of the Deep Space Network, DSN, ground antennas is re-
duced by conically scanning the antennas around a bore-
sight. The present Conscan technique uses automatic gain
control, AGC, samples of the ground receiver as a mea-
sure of the carrier power; but, if the noise power is fairly
constant over several scan cycles, the P./Ng estimates will
serve the equivalent purpose.)

A simplified block diagram of the section of the digital
phase-lock loop (DPLL) preceding the P./Ng estimator is

When Py/Ny is low, the two estimators have essentially the

shown in Fig. 1. The sampling rate before the half-band
filters (HBF’s) is 40 MHz. The output of the HBF’s has
been decimated by two so that the new rate is one half
of 40 MHz (f, = 1/T, = 20 MHz). The signals, ¢, and
gn (shown below), are then accumulated over K samples,
resulting in I; and @Q;, which are the inputs to the P./Ny
estimator to be implemented in software. The sampling
rate of I; and Q; is f,/K = 1/T,, where T, = KT is
the carrier tracking loop update time, and can range from
about 10 Hz to 10 kHz.

Il. Estimator Algorithms

Assuming the carrier tracking loop is locked onto the
received carrier frequency, the in-phase and quadrature-
phase baseband signals (at sampling instant n) at the out-
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put of the HBFs (neglecting higher order terms that are
filtered out by the HBF’s) are, respectively [1],

in = \/}chos én + \/P_ddn Gin (ws.nTs + 0,) sin ¢y,
+ ni (n) (1)
and
tn = /P, 5in ¢ + /Padn 5in (weenT)y + 0,) cos ¢y,
+ 1y (n) (2)

where P, is the carrier power, ¢, is the phase error in the
carrier tracking loop (assumed to be constant over one es-
timation period for all calculations), Py is the data power,
d,, represents the independent data samples that equal £1
with equal probability, and Gin(ws.nTs + f,) represents a
sample of a square-wave subcarrier with arbitrary phase
O,

In this case, n;(n) and ny(n) are the noise terms from
the in-phase and quadrature-phase channels, respectively,
and are assumed to be statistically independent Gaussian
random variables with a mean of zero and variance of 02 =

No/(2Ty).

As seen in Fig. 1, the i, and g¢,, signals are accumulated
to give I; and Q;, respectively. Thus,

| GHDE-1
I = % Z / P.cos ¢ + n;(j) (3)
n=jK
and
1 (G+1)K-1
Qi =— vV Pad, Sin (wyenTy + 65) cos ¢ + ng(y)
K

n=jK

(4)

where the sin ¢, terms have been neglected under the as-
sumption that the tracking error is very small (i.e., the
loop is in lock). In addition, ¢, and 6, have been re-
placed by ¢ and 8, respectively, under the assumption of
constant phase over an observation interval. Both n;(j)
and ng(j) are formed by averaging samples of n;(n) and
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ng(n) and are, therefore, also independent Gaussian ran-
dom variables with a mean of zero and a variance of

02 = 0% = No/(2KT,) = No/(2T.).

The 1Q-arm estimator algorithm is [1]

1 L=1 2
(figo Ij)
(5)

141
2T, ijz:o Qj

R[Q =

where the random variable EFQ is the P./Ng estimator and
L equals the number of DPLL updates in the estimation
period.

By inserting Egs. (3) and (4) into Eq. (5), it can be
seen that the numerator of Eq. (5) essentially works to av-
erage out the zero mean noise samples ny(n), resulting in
an estimate of the carrier power (assuming a small phase
error). In the denominator of Eq. (5), the Q-arm estimates
are first squared, then averaged. Assuming that the sub-
carrier frequency w,. is large as compared with 1/7; and
the data power is not too high, the first term in Eq. (4)
will be small and, thus, the denominator of Eq. (5) will
be a scaled estimate of the sum of the squares of ng(n),
which equals the noise power. (In reality, the effect of the
data power is important, as will be seen in the analysis
below.)

The I-arm estimator algorithm [2] is

where 1/2\] is the P./Nj estimator and L is defined as above.

By inserting Eq. (3) into Eq. (6), it can be seen that
the numerator of Eq. (6) is the same as that of Eq. (5).
However, the denominator, which reduces to an estimate
of noise power, does not depend on the data power and, as
shall be seen below, is the major advantage of the I-arm
estimator over the IQ-arm estimator.



Ill. First and Second Moments of the IQ- and
I-Arm Estimators

For simplicity, the following intermediate variables are

defined:

1 L-1 2
X = (ZZIJ-) (7)
j=0

1
Y=< Q! (8)
1=0
L-1
z=> 1 (9)
J=0

Using Eqgs. (7), (8), and (9), Eqgs. (5) and (6) can be

written as

X

Rio = 5ny (10)
and
— X
Rp = 7 (11)
7= (Z - LX)

The statistics of the estimators are not trivial, since in
both cases the numerator and the denominator are corre-
lated. (In the case of the IQ-arm estimator, the numera-
tor and denominator are correlated, even though they are
obtained from in-phase and quadrature-phase arms, since
both arms have terms that contain the phase error ¢.)

The method used here to find the statistics is to expand
the expressions for Ryg and R; (each of which is a func-
tion of two random variables whose moments are shown
below) in a two-dimensional Taylor series and then to find
the expected value and variance of the expanded series.
The higher order terms of the Taylor series expansion are
ignored. Using this approach, the expected value of the
[Q-arm estimator can be approximated by the following
expression [3,4]:

E\ — E\
e = Melxy

1 [6%R; 8?Rr¢
5 [——BX?Q ar(X) + 6Y2Qvar(Y) L
XY
62@COV(X Y) (12)
X0y ’ %5
and the variance by
oFrg\
var (E;;,) = ( 6)1((2) var{ X)
XY
0Fg\
+ (—8%) var(Y)
Xy
af)’("? a;ﬂ@ cov(X,Y) (13)
XY

where the overbar indicates the statistical average and
the covariance of X and Y is defined as cov(X,Y) 2
E{(X-X)(Y -Y}=XY —XY. The expected value
operator is represented by E{-}. For the I-arm estimator,
the equations are identical, except that Y is replaced with
Z.

The moments of X, Y, and Z, which are necessary for
the computation of Egs. (12) and (13), are shown here (see
the Appendix for the derivations).

Defining ggicos2¢ and g4 icos4 ¢, the first-order mo-
ments are given by

- No
X = g, P
ga2ic + QLTu (14)
— N,
Y =K 1g,P 0
g2 g + T (15)
— LN,
Z = Lg?.Pc + 2Tu (16)

Eq. (14) shows that the numerators of both estimators,
Egs. (5) and (8), are, in fact, a positively biased estimate
of the carrier power (neglecting phase error). Also, the
estimate of noise power in the IQ-arm case, given by a
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scaled version of Eq. (15), is biased. The I-arm estimate
of the noise power, however, is unbiased.

The second-order moments are given by

— 6 No No \?
2 _ 2
= ga P +2LT92P +3(2LT) (17)

L+2 L+2( No\?
—%3 94 +L1’T N092Pd+—L ( )

_ N No \?
22 = L2g4PC2+L(L+2)T—092Pc+L(L +2) (ﬁ) (19)

and the covariances by

cov (X,Y) = K1 (ga — g2) P4P: (20)

2

N;
cov(X,Z) =L (g4 "gz) P2+ 217 NogaPe + 57 2LT?

(21)

In the case of the Block V receiver, the DPLL is a
third-order loop whose phase error has a probability den-
sity function characterized, approximately, by a Tikhonov
distribution (for zero detuning) [5]. For this case, g5 and g4
are obtained by using the relation cos n¢ = [I,(«)]/[To(a)]
[5] where, for high loop signal-to-noise ratio (p =
P./NoBp), a is approximated by p [5]. Thus,

——_ 1 DL(p)
cos? ¢ = + 270(0)
(22)
ot d = l 415(p) L4(p)
=5 Tl T Tlo)

By inserting Eqgs. (14) through (22) into Eqgs. (12) and
(13), the mean for the IQ-arm estimator, after simplifying,
is

= KA | 2T,KA 2 AN
RIQ_QLTUB+ 753 {[(3 F)!M gz] (m)
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QI{TU ( ) Py PC
98— No No

(23)

2Kg, Ps | K°
LT, No @ 2LT2

and the variance is

—\ K2 P.\?
var (RIQ) = 57 {(94 - 9@ <ﬁcg> +
K2A? 2 ] £ Pa\?
t B {[(3 %) ‘92} (Vo)
LK 2K2A Py P.
2LT?

5 TR R,
where A = 2LT,,g2(P./No)+1 and B = 2T, g2(Pa/No)+K.

29, P n 1
LT, No ' 2L°T2

2Kgy Py

IT. N, (24)

The mean for the I-arm estimator is

= L+1/ P 1
Ri= 7= 1("’2N +2LT> (25)

and the variance is
=\ L—=3,\ [P\
var (Ri) = (""‘_ [ 192) (N_o)

292 Pc 1

Tu(L—1)No ' 2T2L(L —1) (26)

+

The signal-to-noise ratio (SNR) of the estimators is de-
fined here as

(27)

It should be noted that for Py/Ny equal to zero and
L > 1, the IQ-arm estimators expected value and variance
reduce almost exactly to that of the I-arm estimator.

IV. Discussion of the Results

The performance of the estimators is shown in Figs. (2)

and (3). Figure 2 shows }?I\Q and SNR (EI\Q) versus the
carrier-to-noise power (P./Np) in dB-Hz for a typical mod-
ulation index such as that used by the Galileo spacecraft,



ie, A =76 deg where tan? A = Py/P.. Figure 3 depicts

R; and SNR (]/2\1) versus P./Ng in dB-Hz. The effect
of the data power Pj in the IQ-arm estimator becomes
critical when the data power is large, which, for a A =
76 deg, occurs at high values of P./Ny. At this point,
the mean of the IQ-arm estimate begins to diverge rapidly
from the true value, in contrast to the mean of the I-arm
estimate, which asymptotically approaches the true value.
(This contrast is more clearly seen when comparing the
SNR curves.) At low P./Nq the I- and 1Q-arms are essen-
tially tdentical. The expected values of both estimators
approach a positive asymptote at low values of P./Nj as a
result of the positive bias in the estimator, which decreases
with increasing L. Also, the effect of the loop bandwidth
B; on both estimators can be seen. This is the result of
tracking loop jitter at low P./Ny caused by the g, and g4
terms in Egs. (23) through (26). (When Bj gets larger,
the phase error variance increases causing ¢gs and g4 to
decrease, thus, biasing the estimates.)

The I-arm estimator SNR approaches an asymptotic
value at high P./Ny values as a result of the bias in the

estimator. This asymptotic value increases proportion-
ately with the estimation length, L. (For P,/Ny > 1 and
L > 1, SNR(R;) — L/2). To illustrate the meaning of
the SNR in Fig. 3, consider the point P,/Ny = 40 dB-Hz
where Sl‘{R(fZ) = 24 dB. This means that the expected
value of R is 12 dB above the standard deviation of R (or

op = 10“1'25). Thus, the tolerance on the estimator read-
ing is 10,000 (1+10~1-?), which is approximately equal to
40 4+ 0.27 dB.

V. Conclusions

In this article, the expected value and variance of two
P./Ny estimators were derived and plotted. The results
show that the I-arm estimator performs better than the
IQ-arm estimator when Pj;/Ng is high, which occurs for
high values of P./Nj and significant modulation index. (In
Fig. 2, this happens when P, /Ny exceeds 38 dB-Hz.) Also
the effect of the positive estimator bias end loop jitter,
which increases for higher values of By, is to degrade the
performance of both estimators at low values of P./Njy.
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Fig. 1. Part of the DPLL preceding the P;/Ng estimator.
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358

70¢ = P —— 25
s Ay =F /Ny 2~ SNR(QR)
£ oo B8, =01Hz W4 20
50; —-— B;=10Hz ]
£ 15
40 ]
0= 10 <
20=
C 5
10F
UPDATE TIME, T, = 2 ms o
0 z ESTIMATION LENGTH, L =500 7
—TDV: | ) ! L ! L I +—5
-10 0 10 20 30 40 50 60 70

ACTUAL P,/Ng, dB+Hz

Fig. 3. Mean value and SNR of the I-arm estimator.

). dB

-

SNR (R



Appendix
Derivation of Equations

For ease of notation, define g, ‘: cos™ ¢.

I. Evaluation of the First Moments
The first moments given in Eqs. (14) through (16) are derived, using Egs. (3} and (7), as follows:

LK-1 2
X Z K~ 1\/—cos¢+Zn1(])}

L-1 2
=E{ P.cos’¢p+ — \/_cos¢2n1(])+ [Zn; }

]:0

=P

0
2LT,

The expression for ¥ contains products of d,,, Sin (w,.nT, + #) and cos¢. It is assumed that each of these terms is
independent of the others. Here, Sin (ws.nT, + 6) is represented by 5, (recall this is the square-wave subcarrier term).

Thus, for example,
E {dndn5nSm cos’ ¢} = 6nmg2 (A-2)

since 5,5, =1 and E{d.d;».} = 6.m, where §,,,,, is the two-dimensional Kronecker delta function.

Using Egs. (4) and (8) yields

. 1 L1 P, GH+1)K-1 (G+1)K-1 \/—(J'i-l)K 1
Y =E —L—Z %z Z Z dnSn cos png (i) + nh(5)
ji=0 n=jK m=jK n=jK

Py 13
=02+ 7 ) E{nj()}
j:O

Py Ng
d A-
=% g2 + 9T, (A-3)

Using Eqgs. (3) and (9) yields
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_ L1 G+uK-1 2
Z=E{Y |7 2 VPcosotm())

1= n:jK

j=0 j=0

L-1 L-1
=E {LPc cos ¢+ 2L+\/P, cos ¢ Z ny(j) + Z "?(J')}

LN,
= LP, =0 ,
g2+ T, (A-4)

Il. Derivation of Second Moments
The second moment of X, using Eqs. (3) and (7), is:

LK-1

4
L-1
v 1 - .
X2=E -1;—4! E K='W/P.cos¢ + E n;(]):l
j=0 1=0

1 L-1 2 1 L-1 4
—_ 2 . .
=g4Fc +6Feg2E Q|+ _ ns(J) +tEST Z ni(J)
j=0 =0
6Ny No \?
= P+ —2 —0 _
g4 +2LTug2Pc+3<2LTu) (A 5)
Equations (A-6) through (A-11) are needed to compute E{Y?}.
E{d,} =0 (A-6)
n=m#p=r or
1ig 4 =P Fm=r or
E{d.dndpd.} = n=r#tm=r or (A-7)
n—m= p =r
0 otherwise
or, in a more mathematical form,
E{d”dmdpd"} = (571"16}"‘ - 671'71177‘) + (5np6m7’ - 6nmp7‘) + (5nr6mr - 6nmpr) + 5nmpr
= 5nm6pr + 6np6mr + 6nr6mr - 2(Snmpr (A—S)

where &,mpr is the four-dimensional Kronecker delta function, which equals unity only whenn=m =p=1r.
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Using Eq. (A-8),
GHDK-1 G+DK-1 G+1DK-1 (G+1)K-1
> > > > E{dndmdyd,} = K* + K* + K2 — 2K
n=j;K m=jK n=jK n=jK

=3K? - 2K (A-9)

If n; represents independent, Gaussian, zero mean random variables, then

E {ninanans} = E{nin2} E{n3ns} + E {nin3} E {nana} + E {n1n4} E {nyns) (A-10)
Using Eq. (A-10),
L-1L-1 L-1L-1
E{ né(] nQ(I)} = E { nQ(l)}
7=01=0 ji=0 I=0
L-1L-1
= E{ng(/)} E {ny(D} +2[E {no(j)no()})*
Jj=01=0
L-1L-1
- (o1 +2[507]%)
j=0 1=0
= (L? +2L) of (A-11)

Using Eqs. (4), (8), (A-9), and (A-11) yields

Jj=01=0 n=;K m=jK n=3K

L-1L-1 (j+l)K—1(J+1)K 1 \/_d(J.HK 1
R EDIDD DY dudnSaSmeos’é+ 2 ST da5, cosgngld) + nd ()

P (I+1)K -1 (I+1)K -1 2\/— (I+1)K-1
= > > dyd.S5,5 cos’p+ Pa > dyS, cos gng(l) + n (1)

K?
p=IK r=IK p=IK

Pioar o Py . No 4 K Ny 1 ,., Ny

K271,
3K -2, L+2 No L+2( No\?
- Op 42T A-12
o 9aPd e Pat — (QTu) (A-12)

The second moment of Z is given, from Eqgs. (3) and (9), by
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L-1L-1 ] , (G+1K-1 | G+DK=1

2 2
Z2=FE % Z ﬁcosqﬁ—{—n;(j)] {E Z \/}chosqzﬁ-i—n](l):l

j=0 I=0 L n=jK m=IK

L-1L-1_
=E { P, cos® ¢ + 2\/]chos¢n1(j) + nf(j)] [Pc cos® ¢ + 2\/Fccos¢n1(l) + n?(!)] }

N, 2
2]; ) +4Lchg-N— + (L2 +2L) ( “) (A-13)

_72p2

The cross-correlation of X and Z is found as follows, from Egs. (3), (7), and (9):

Xz

LK-1 ? L-1 1 (F741)K-1 2
(Z K_l\/_cosgb—l-Zn] ])) Z I:E Z \/FcCOS¢+nI(j):|

j=0 n=j K

2
L-1 L-1
2 1 .
P.cos?¢ + Z\/PC cos ¢ Z nr(j) + Iz l:Z n;(])j'
j=0

j=0
L-1 L-1

x [LPC cos® ¢+ 2L\/Pecos ¢ Y ny(§) + Zn’;’(j)} (A-14)
ji=0 j=0

Using Eq. (A-10), the expectation of the fourth-order noise cross-terms in Eq. (A-14) is

L—-1 2L—l L-1L-1
E (an(j)) PBLHOMED >

i=0 Jj=0 i=0 j=0 %k

i E {n/(ins())n3(k))
=33 S Blu@nG)}E {r}0)} + 2B {ns@rs (D) E rs()nr (k)

2 2 2 2
= (5,‘j0’]0’1 +26,'k0'1(5jk61

= L%} 4 2Lo} (A-15)

where 0 = No/2T,,.

Thus, using Egs. (A-14) and (A-15),
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No 4 LN, 1_ LN, 1 N =
XZ = LP%gs+ LP.ga 9297 ch922Tu+ZPc92-2Tu+ﬁE [Zm(]) an(])

j=0 §=0

N N
- irzges (e nnaie s (14 2) (52 ) (A-16)

The cross-correlation of X and Y is found in a similar way, by making use of Eqgs. (3), (4), (7), (8), (A-2), and (A-10),

2
LK-1
XY =E Zlf(z ’_1\/—cos¢+2n1(3))

=0

L Lot [ p, GHLE-1GH DK 2\/1—)—0“)’(—1
g d . 2 .
x £ § %1 E E dnd G, S cos® ¢+ = E dn 5, cos gng(j) + np(J)
j=0 n=jK m=jK n=jK

j=0

2
2 v (R
=FK P.cos?¢ + Z\/PC cos¢Zn1(])+ Iz (Z n1(]))
j=0

n=j K m=jK n=j K

lL—l Py G+DK-1(+1)K-1 \/—d()v{-l)K—l
x 2 1% > S dndnSnSmcos’ ¢+ =5 3 duTncosgng(s) + nd()

_ PyP, No Pi No 1(N0>2

Pa 1 A-1T
2T+LK G251+ 7\ 97, (A-17)
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